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Figure 1: To create a data wrangling script, users can first demonstrate their desired actions on the tables in Dango (Step1). They
can edit table cells, add/delete/move columns and rows, and copy/cut content acrossmultiple tables. For complex demonstrations,

users can also describe their intent in natural language in a chatroom. When ambiguity is detected in a demonstration or a NL

description, Dango will generate a multiple-choice question about each unclear part and prompt users for clarification (Step2).
Once the ambiguity is resolved, Dango synthesizes a data wrangling script to automate the desired actions. To make it easier

for users to understand and validate the synthesized script, Dango explains the script in natural language step by step (Step3).
When users notice a wrong step in the script, they can easily fix it by directly editing the NL explanation of that step. They can

also add missing steps or delete redundant steps. Dango will update the script based on user edits.

Abstract

Data wrangling is a time-consuming and challenging task in a data
science pipeline. While many tools have been proposed to automate
or facilitate data wrangling, they often misinterpret user intent,
especially in complex tasks. We propose Dango, a mixed-initiative
multi-agent system for data wrangling. Compared to existing tools,
Dango enhances user communication of intent by: (1) allowing
users to demonstrate on multiple tables and use natural language
prompts in a conversation interface, (2) enabling users to clarify
their intent by answering LLM-posed multiple-choice clarification
questions, and (3) providing multiple forms of feedback such as
step-by-step NL explanations and data provenance to help users
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evaluate the data wrangling scripts. We conducted a within-subjects
user study (n=38) and demonstrated that Dango’s features can
significantly improve intent clarification, accuracy, and efficiency in
data wrangling. Furthermore, we demonstrated the generalizability
of Dango by applying it to a broader set of data wrangling tasks.
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1 INTRODUCTION

Data wrangling is a time-consuming and challenging task in the
early stages of a data science pipeline [17, 86]. It is reported that
data scientists spend up to 80% of their time changing table layouts,
transforming data formats, and filling in missing or incorrect val-
ues [80]. To address this challenge, many interactive systems have
been developed to help users clean data [39, 41, 54, 55]. However,
they have two major limitations. First, they are limited to single-
table tasks, while a recent study by Kasica et al. [56] has shown
that many data wrangling tasks involve multiple tables. Second,
existing systems primarily rely on user demonstration to interpret
user intent, in which the user demonstrates desired data transforma-
tions on a few data points and the system generates a generalizable
script for automation. However, demonstration is not convenient to
specify certain transformations, such as deleting a row only if more
than a quarter of the values are missing. It is difficult to precisely
communicate the criterion “more than a quarter of the values are
missing” via demonstration alone.

The rise of Large Language Models (LLMs) provides new op-
portunities for augmenting or re-designing data wrangling tools.
LLM systems have shown their ability to engage in natural lan-
guage (NL) conversation with humans [8, 34], lowering the entry
points for novice users to interact with more complex systems.
More recently, several systems have been proposed to leverage
LLMs for data wrangling [24, 68, 94]. Despite their potential, these
systems have several usability issues. First, they only allow NL
interaction. While convenient, NL is inherently ambiguous and can
be cumbersome when specifying certain operations compared with
demonstrations, such as moving a specific row from one table to
a target position in another table. Second, these systems do not
handle the hallucination problem [52] and provide little support for
users, especially end-users, in identifying and rectifying the errors
in LLM-generated data transformations. Moreover, though LLMs
are likely to misinterpret user intent, these systems do not provide
effective ways for users to clarify their intent or provide feedback.

To address these issues, we propose Dango, a mixed-initiative
system that enhances the communication between LLM agents and
users for data wrangling. Dango supports both direct demonstra-
tion and NL interaction to enable rich intent expression. When user
intent is ambiguous, Dango generates clarification questions (CQs).
Users can refine their intent by answering these CQs. The Q&A
history is then incorporated into a feedback loop to continuously
improve the results. To help users understand the script’s behavior,
Dango renders the synthesized scripts as step-by-step explanations
in NL. Users can read these NL explanations easily and make direct
edits to them. Given the complexity of multi-table tasks, Dango
automatically visualizes data provenance, helping users understand
the interrelationships between tables.

We conducted a within-subjects user study with 38 participants
to evaluate the usability and efficiency of Dango. Participants
using Dango finished the assigned tasks in 3 min and 30 sec on
average, reducing the task completion time by 32% and 45% com-
pared with using the other two conditions. In the post-task survey,
participants felt more confident about the generated scripts when
using Dango. To understand the generalizability of Dango, we

conducted a quantitative experiment on 24 additional data wran-
gling tasks. The result shows Dango can solve all of the tasks with
an average task completion time of 62.67 and 75.90 seconds by the
first two authors, respectively. This provides quantitative evidence
about Dango’s effectiveness on a variety of data wrangling tasks.

2 RELATEDWORK

2.1 Data Wrangling

Data wrangling is a critical but time-consuming process in data
science. A recent study by Muller et al. [80] points out that even
professional data scientists may take weeks, if not months, to wran-
gle data to achieve high data quality. This process has been reported
to be one of the most time-consuming and laborious stages in a
data science pipeline [29, 55, 80, 86].

To help end-users wrangle data, researchers have developed a va-
riety of interactive data wrangling systems to reduce manual efforts.
One of the earliest systems is Nix’s Editing by Example system [83],
which can automatically generate a replayable editing program
by inferring users’ input/output example text. Later, Witten and
Mo [78, 105] introduced the TELS system, which allows users to
demonstrate text editing actions and uses these demonstration
traces to synthesize text transformations. To improve the trans-
parency of synthesized transformation scripts, Blackwell et al. de-
veloped SWYN [18] that enables users to select text examples and
preview the effects of the induced scripts. Similarly, Toped++ [91] al-
lows users to create “topes” which are graphical representations of
the data format used by the system to infer reformatting rules. Fur-
ther developments such as Potluck [50] and Lapis [76] enable users
to edit strings simultaneously at different locations. SMARTedit [62]
applied Programming-by-Demonstration (PBD) to automate text
processing tasks by allowing users to demonstrate desired actions.
Karma [99] introduced a clean-by-example approach that allows
users to specify the desired format of cleaned data.

While the aforementioned systems focus on wrangling unstruc-
tured data such as text, a parallel line of research focuses on wran-
gling structured data such as tables or spreadsheets [90]. Wran-
gler [42, 55], for example, employed both PBD and direct manip-
ulation to recommend applicable transformations based on user
demonstrations on tables. Gulwani developed a new PBE algo-
rithm [38], which is later used in Microsoft Excel known as Flash-
Fill [38], allowing users to synthesize programs for string trans-
formations. Harris and Gulwani [43] later developed another PBE
system that supports table structure transformation. To help data
scientists wrangle data, Wrex [30] applied PBE to synthesize wran-
gling scripts in Pythonwithin Jupyter Notebooks. Other researchers
have also employed synthesis techniques to perform data transfor-
mations [32, 45, 54, 62, 64, 107]. Despite their advancements, these
systems only focus on synthesizing code for single-table tasks,
while a recent study by Kasica et al. [56] found that data wrangling
tasks usually involve multiple tables. In contrast, Dango enables
users to synthesize code for multi-table tasks.

The most related tools to our work are those that leverage LLM
agents for wrangling tables and spreadsheets [16, 24, 68, 87, 94, 113].
However, these systems only support one-shot synthesis and lack
mechanisms for users to clarify or refine their intent, resulting in
errors like incomplete solutions and wrong actions [68]. This issue
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can be seen as the gulf of execution [49]: the challenge users face
in clearly expressing their intent to instruct AI. To bridge this gap,
Dango enables users to clarify their intent by answering AI-posed
clarification questions before synthesis. Users can keep refining
their intent through natural language instructions or demonstra-
tions until the desired result is achieved.

2.2 LLM-based Interactive System

The recent advent of Large Language Models (LLMs), such as
OpenAI’s GPT models [8, 34], Google’s PaLM [13], and Meta’s
Llama [98], has significantly influenced interactive systems across
various domains [35]. For instance, Microsoft has integrated Copi-
lot [75] into their suite of productivity tools. Amazon has developed
a custom-built LLM for Alexa [12]. In parallel, HCI researchers
have also infused LLM into their system designs, revolutioniz-
ing fields in writing [26, 77, 109], education [57, 71], video edit-
ing [102], programming [74, 79], health [67], AR/VR [25, 73], visu-
alization [101, 103], data science [36, 37, 106], among others. These
LLM-based systems have introduced new interactive paradigms,
shifting from traditional interactions—where users instruct com-
puters what to do—to a more AI-driven approach—where the user
specifies what results they want, a new interaction identified as
intent-based outcome specification by Nielsen [82].

However, recent studies show that these LLM-based systems
could also misinterpret user intent due to the inherent ambiguity of
NL instructions [28, 37, 72, 92], leading to misalignment between AI
and human intent [93]. To address these issues, many studies have
used clarification questions (CQs) to resolve ambiguous queries
and improve user experience [10, 28, 31, 97, 104, 116]. For instance,
Danry et al. [28] found AI-framed Questioning increases human
discernment accuracy of flawed statements. In the information
retrieval community, CQs have been found useful to help user
clarify their needs in search engines [10, 104, 116]. Similarly, in the
software engineering domain, Eberhart et al. [31] introduced an
approach for generating CQs to refine user queries in code search.

Despite its usefulness, clarifying ambiguous user intent using
CQs has received limited attention in data wrangling. To the best of
our knowledge, no data wrangling tools have utilized CQs to assist
users in clarifying their intent. Traditional synthesis methods [30,
38, 43, 55], such as PBD or PBE, typically lack effective mechanisms
for refining user intent. In this work, Dango uses both PBD and a
conversational interface powered by LLM to help users express their
intent. When the user intent is unclear, Dango asks CQs to help
refine their intent. In addition, Dango provides multiple feedback
modalities, such as data provenance visualization and step-by-step
program explanation, to help users evaluate the results, creating a
rich feedback loop for effective data wrangling.

3 DESIGN GOALS AND RATIONALE

3.1 Design Goals

We reviewed prior work on data wrangling, especially those that
have conducted user studies or discussed usability challenges in
data wrangling tools [24, 30, 36, 39, 40, 55, 56, 61, 68, 94]. We sum-
marized four major design goals for Dango based on the common
issues and challenges identified by previous work.

G1. Help users express and clarify their intent. Previous
tools [30, 39, 55, 61] primarily use PBD to synthesize data wrangling
scripts based on examples or demonstrations. However, many stud-
ies [60, 65, 81, 112] showed that users find it hard or cumbersome to
provide complex examples. Recently, the rise of LLMs has brought
new opportunities for facilitating data wrangling tasks with NL in-
terfaces powered by LLM agents [16, 24, 68, 87, 94, 113]. While this
enriches the interaction modes, the inherent ambiguity of natural
language also brings new challenges to interpreting user intent.
According to a recent study by Gu et al. [37], LLM agents could
easily misinterpret user intent and generate incorrect operations.
Moreover, instructing LLMs via natural language can be a brittle ex-
perience for non-AI-experts [110]. They often struggle with finding
the right narratives to effectively communicate with LLMs. There-
fore, it is critical to help users better express their intent and more
importantly, clarify their intent in case of misinterpretations.

G2. Help users wrangle multiple tables. Previous data wran-
gling tools [30, 39, 55, 61] only support single-table interactions.
However, a recent study by Kasica et al. [56] reveals that as data
complexity and volume increase these days, data wrangling tasks
often involve multi-table operations. Specifically, they identified
21 multi-table operations that are challenging to demonstrate and
synthesize using existing synthesis methods. For instance, an audi-
tor may need to split tables of annual transaction records over the
past 20 years into subtables based on the product category and then
only remove rows with missing values in each subtable. Currently,
there is little tool support for such multi-table operations [56]. Thus,
the new tool should be able to interpret user demonstrations or
NL descriptions that involve multi-table operations and synthesize
scripts to perform these operations.

G3. Help users interpret and validate the automation re-

sults. Compared with other automation tasks, data wrangling faces
a unique challenge due to the large volume of data involved in a
task. It is hard and sometimes time-prohibitive to manually validate
the wrangling results [37, 84]. While PBD systems synthesize a pro-
gram that prescribes the operations behind the wrangling results, it
is difficult for end-users to understand the program, which is one of
the main reasons that hinder the widespread adoption of PBD sys-
tems [40, 60]. Specifically, in the reflection paper on why PBD fails,
Lau mentioned the system should “encourage trust by presenting

a user-friendly model” [60]. This echoes the understanding barrier
and the information barrier in end-user programming [59]. More
recently, Gu et al. [37] reveal the challenges of interpreting and
validating data analysis results, such as not being able to translate
the semantics of the analysis code to familiar operations in their
mental models. Therefore, it is critical to design effective mecha-
nisms to help users quickly interpret and validate the results or the
code that computes the automation results.

G4. Help users make corrections. For PBD systems, the de-
facto way of fixing an incorrect script is to provide more demon-
strations to refute the incorrect script so that the PBD system can
better extrapolate and avoid overfitting. However, this is ineffi-
cient, especially for minor errors, as the users must demonstrate
from the beginning every time. Several studies have shown that
end-users prefer simpler and more efficient error correction meth-
ods [46, 61]. Wrangler [55] and Wrex [30] address this by enabling
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users to directly manipulate the synthesized script. However, Wran-
gler is limited to simple scripts, and Wrex still requires program
comprehension and thus is not suitable for end-users. More recent
LLM-based data wrangling systems [24, 68] allow users to make
corrections by refining the initial prompt or providing NL feedback
in the conversation. While this eliminates the need for directly
modifying the synthesized script, users still need to overcome the
communication barriers to LLMs [27, 110]. In particular, a recent
study [110] shows that non-AI-experts often struggle with finding
the right prompt to effectively steer the output of an LLM. These
challenges highlight the need to help users make corrections more
efficiently, especially for LLM-based data wrangling tools.

3.2 Design Rationale

We made two specific design choices to help users to express and
clarify their intent (G1). First, Dango allows users to express their
intent using a combination of demonstration and natural language
conversations. Both interaction modalities are convenient for end-
users without a steep learning curve. Moreover, they are comple-
mentary to each other. Some actions, such as editing a specific cell
and moving a row from one table to a specific position in another
table, are easy to demonstrate by directly performing them on the
table, while some actions are hard to demonstrate but easier to
describe in natural language, such as specifying conditions for an
action or performing a statistical test.

Second, Dango leverages the intrinsic reasoning capability of
LLMs to proactively detect potential ambiguity in user input and
ask clarification questions. This proactive interaction design is moti-
vated by previous findings that users often struggle with identifying
which parts of their input lead to the erroneous output and how
to effectively clarify their intent [37, 72, 110]. Furthermore, when
users prefer or find it necessary, they can still clarify their intent
by directly providing additional demonstrations or NL feedback in
Dango. This allows flexibility and forms a mixed-initiative inter-
action experience where the human and the agent take turns to
contribute at the perceived appropriate time [11].

To achieve G2, we extended a popular DSL for single-table data
wrangling [55, 88] to support multi-table operations, as detailed in
Appendix A. We chose to synthesize scripts in a DSL rather than a
general-purpose programming language such as Python, since the
DSL has a much simpler grammar with highly abstracted operators,
which makes it easier to synthesize and explain. Furthermore, we
chose to leverage an LLM to synthesize a script instead of using
traditional search-based synthesis algorithms, since traditional algo-
rithms are only designed to interpret demonstrations. They cannot
handle NL descriptions that mention desired operations. Specifi-
cally, Dango encodes the demonstrations in NL and feeds them
together with any NL description provided by users to the LLM for
joint interpretation and synthesis. Finally, to help users effectively
manage operations on multiple tables, Dango automatically tracks
and visualizes the data provenance across multiple tables.

To achieve G3, an intuitive approach is to use LLMs to explain a
synthesized script in natural language. However, LLMs are prone to
hallucinations [66]. Besides, a recent study [37] shows that errors
in LLM-generated code are often subtle and thus require users to
carefully scrutinize each step of the analysis procedure. Inspired

by recent systems that support step-by-step explanations [23, 96],
we employ a grammar-based translation method to translate a gen-
erated script into step-by-step explanations in NL. This prevents
LLM hallucination while providing a structured way for users to
understand and verify the script. Another alternative approach is to
render the program into a visual language [21, 89]. Although visu-
ally appealing, this approach still requires users to understand basic
programming constructs such as variables and loops. In addition to
NL explanations, we also allow users to run a synthesized script
and observe its runtime behavior to confirm their understanding
of the script and cross-validate its correctness.

To achieveG4, we allow users to directly edit the NL explanation
of the data wrangling script to fix any recognized errors or describe
expected behavior. The updated explanation will be fed back to the
LLM to refine the script. The rationale for this choice is two-fold.
First, we want to continue leveraging the structured NL explanation
in error correction, so users can immediately fix an error in situ
as they are reading and scrutinizing each wrangling step in the
explanation without context switching. Second, compared with
two alternative approaches—providing more demonstrations or
providing NL feedback in a conversation, editing individual steps
in the explanation allows users to directly indicate where the errors
are, which saves the effort for error localization and enables the
LLM to perform a more focused script refinement. Nevertheless,
we still support these two alternative error correction methods in
Dango for flexibility. We measured the utility of each approach
and reported the results in Section 7.2.5 and Figure 8.

4 SYSTEM DESIGN

As shown in Figure 2, Dango includes three stages—Intent Analysis,
DSL-based Program Synthesis, and Program Evaluation & Refine-

ment. We adopt the multi-agent LLM framework to develop Dango.
LLMs [8, 34] have demonstrated strong capabilities in natural lan-
guage understanding, contextual reasoning, and multi-turn conver-
sations. For each stage, we develop a dedicated agent by leveraging
the in-context learning capability of LLMswith few-shot prompting.
Appendix B provides all prompt templates used in Dango.

4.1 Intent Analysis

In this stage, Dango leverages an analysis agent to analyze user
intent from the user’s demonstrations and conversation history. If
the intent is ambiguous, Dango generates clarification questions.
After the user answers the CQs and there is no ambiguity, Dango
generates a summary of user intent for the next stage to synthesize
the desired data wrangling script.

4.1.1 User Demonstration. To capture user demonstrations, we
set an event listener for every table entry in the uploaded tables.
When a user modifies the table, the event listener logs the change in
the demonstration history. For example, if a user changes a table en-
try from 0 to 3370 at row 5, column E, Dango logs this edit as
{Row:5,Column:E,Old:0,New:3370,Type:Edit}. Specifically, Dango
supports the following demonstrations on the uploaded tables:

1. [INSERT]: insert empty columns or rows.
2. [DELETE]: delete columns or rows.
3. [EDIT]: edit specific cells.
4. [COPY AND PASTE]: copy and paste columns and rows.
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Figure 2: Three core components: Intent Analysis, DSL-based Program Synthesis, and Program Evaluation & Refinement.

5. [DRAG AND DROP]: drag and drop columns and rows.
If an edit operation is applied to every cell in a row or column,

Dango merges these individual operations to a single row/column
edit operation in the demonstration history to save space.

4.1.2 Conversational Interface (Chatroom). Dango provides
a conversational interface that enables users to express their in-
tent or feedback in NL. Moreover, when the user intent is unclear,
Dango poses multiple-choice clarification questions to help users
refine their intent. Each CQ includes different options and an “Other
(please specify)” option, allowing users to provide customized re-
sponses when needed, as shown in Figure 3 f○.

4.1.3 ClarificationQuestions Generation & Intent Summa-
rization. Dango prompts an LLM to detect ambiguities and gen-
erate clarification questions. If no ambiguity is detected, the LLM
summarizes the user intent into an NL sentence. Table 4 in Appen-
dix B shows the prompt template. Specifically, user demonstrations
are encoded as “Table Diff” in the INPUT section of the prompt,
while NL inputs in the chatroom are encoded as “User Instruction”.
After the user answers a clarification question, the answer is ap-
pended to “Chat History” to identify any remaining ambiguities, as
shown in Table 5.

4.2 DSL-based Program Synthesis

Once users define their intent, Dango employs a synthesis agent
to generate step-by-step data wrangling scripts.

4.2.1 Domain Specific Language. Dango’s Domain Specific
Language is built on the foundational work of Potter’s Wheel [55,
88]. We use this DSL because it has been adopted and validated
in several existing work [42, 54, 55]. Since the original DSL only
supports single-table operations, we extended the original DSL to
support multi-table operations and advanced operations such as sta-
tistical tests. As shown in Appendix A, our extended DSL supports
four types of operations: (1) Table-Level Operations, which operate
on entire tables (e.g., merge, transpose); (2) Column/Row-Level Oper-

ations, which modify specific rows or columns (e.g., insert, drop);
(3) Summarization Operations, which aggregate data into new tables
or statistical values (e.g., aggregate, test); and (4) String Operations,
which manipulate text transformations (e.g., concatenate, format).

4.2.2 PlanGeneration. Dango adopts a self-planning strategy [53,
108] to first prompt the LLM to generate a synthesis plan for task
decomposition. Each step in the plan contains a NL description of

the desired action and the specific DSL operation that can achieve
this action. Table 6 shows the prompt template.

4.2.3 DSLProgramSynthesis. After generating the step-by-step
plan, Dango curates the arguments according to the DSL grammar
specifications. To prevent potential hallucinations, we designed a
syntax checker to statically check the correctness of the operation’s
arguments based on our DSL grammar. If verification fails, Dango
appends error messages to the input and prompts the synthesis
agent to generate a refined script. The prompt templates used in
this step are detailed in Tables 7, 8 and 9.

4.2.4 DSLProgramExecution. When users click RUN button to
execute the script, Dango first imports the DSL function implemen-
tations into the execution environment. Dango then synthesizes a
Python code snippet that uses these DSL functions, following the
LLM prompt in Table 10 in Appendix B. The snippet is executed
using Python’s exec() command [3]. This approach facilitates dy-
namic code execution and handling of conditional operations. Note
that the original table content will not be altered. Instead, new
versions of the table are named with sequential version numbers
(e.g., table_v1, table_v2). This idea is inspired by versioning sys-
tems [58, 111, 115].

4.3 Program Evaluation & Refinement

4.3.1 Step-by-Step Natural Language Explanation. To help
users understand the generated script, Dango translates each DSL
statement into a natural language explanation. To prevent potential
hallucinations, we design translation rules for each statement, as
shown in Table 15 in Appendix C. For instance, given a DSL state-
ment delete_table(sales.csv) in a script, Dango translates the
statement based on a text template—“Delete the table” + “𝑋 ”. In
this template, the name 𝑋 will be replaced by the first argument
sales.csv to compose the final string “Delete the table sales.csv.”
For statements with conditions, Dango appends the condition
string to the explanation. For instance, the final string will be “Delete
the table sales.csv if there are more than 30% of missing values.”

4.3.2 DSL Program Refinement. Due to potential hallucina-
tions of the LLM agents used in our system, Dango might synthe-
size erroneous scripts that are not desired. To help users refine the
synthesized program, Dango allows users to refine the synthesized
scripts through the following actions (Figure 3 g○).

1. [EDIT]: edit a step in the NL explanation.
2. [DELETE]: delete a step.
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StudentID Name Gender Course A Course B

00336617 John Male 9 N/A
. . .

00770000 Elisa Female 7 6

StudentID Name Gender Course C Course D

00440033 Alice Female 3 6
. . .

00993399 Ben Male 5 5

↓
Name StudentID Course A Course B Course C Course D

Alice 00440033 5 7 3 6
. . .

Yen 00990033 5 4 7 5
Table 1: The two raw tables (shown at the top) and the desired cleaned table (shown at the bottom).

3. [ADD]: add a new step in NL.
4. [SAVE]: save the current script.
5. [REMOVE]: remove the current script.
6. [REGENERATE]: regenerate the script.

If the user only adds a step without changing other steps, Dango
will prompt the LLM to simply update the script with the newly
added step using the prompt template in Table 11. For other types
of edits, Dango will prompt the LLM to regenerate the DSL script
based on the previous script using the prompt template in Table
12. In both cases, Dango will prompt the LLM to re-summarize
the user intent for further usage, e.g., in the next round of script
generation or refinement.

4.3.3 Data Provenance View. Multi-table operations usually in-
volve complex data dependencies. This may increase the user’s cog-
nitive overload to memorize each change and the inter-dependency
between tables. Thus, Dango visualizes data provenance to allow
users to track different versions of tables and their dependencies.
When a user executes the scripts, Dango’s backend calculates the
data dependency by analyzing the data flow between different ta-
bles. For instance, when C = merge(A, B), Dango will render two
directional edges from A → C and from B → C. Each node repre-
sents a specific version of a table, with directional edges showing
dependencies between tables. The dependency is done at the table
level, not at a more fine-grained level such as row or column. This
is because finer granularity would make the provenance view large
and overwhelming, also known as flood of information [9, 19]. To
see the content of a certain table at a certain version, users can click
nodes in the Data Provenance view panel. The corresponding table
content will appear in the Table View panel. This creates a visual
correspondence, or brushing [14], allowing users to interactively
check corresponding table content.

4.4 System Implementation

Dango’s frontend is developed with React and Vite [6]. For state
management, Dango employs Zustand [7]. Dango uses Tailwind
CSS [5] to create a responsive user interface. The user interface in-
corporates Handsontable [2], providing an intuitive experience for
spreadsheet tables, as well as React Flow [4], providing Node-Based
UIs for the data provenance feature. Dango’s backend incorpo-
rates FastAPI [1], a web framework for building backend APIs with
Python. We use OpenAI’s gpt-4o-mini [48] as the LLM for Dango.
We set the temperature to 0 to make our experiments reproducible
while keeping all other hyperparameters at their default settings.
In particular, the default setting of top_p is 1, frequency_penalty
is 0, and presence_penalty is 0.

5 USAGE SCENARIO

Beth is a professor in the Department of Education who wants to
study the students’ ratings on different courses to improve teaching
quality and student satisfaction. She has run two separate surveys
for different courses and collected student ratings. The raw data
have been downloaded into two separate tables, as shown in Table 1.
Since manually cleaning data is time-consuming, she decides to use
Dango to generate an automated script.

She first uploads two raw tables to Dango. Next, she clicks the
RECORD button (Figure 3 d○) and demonstrates to Dango how

to clean the data. She deletes the Gender column and then moves
the Name column ahead of StudentID. After her demonstration,
Dango generates a multiple-choice clarification question in the
chatroom, asking if she wants to apply the same changes to Table
2. Beth confirms by selecting the “Yes” option (Figure 4 a○). Dango
then generates the DSL script and renders the step-by-step NL
explanation of the script, as shown in Figure 4 c○.

Beth reads this step-by-step NL explanation and confirms that it
matches her intent. She clicks the RUN button and soon notices
that the data provenance view is rendered (Figure 3 o○). She clicks
the “Table2_v1.csv” node in the data provenance view and confirms
that the transformations to Table 2 are correct.

Beth now wants to merge these two tables. She types in the chat-
room: “Merge the tables into a single table bymatching the StudentID”.
Dango then generates a script and its explanation (Figure 4 d○).
This looks correct to Beth, so she clicks RUN to perform the action.
Then, Beth notices some missing values in the merged table. She
then types, “Please eliminate rows if containing an excessive amount

of missing values. Then populate the remaining missing fields with

columnmean values.” Dango then generates a clarification question
to ask Beth to specify the threshold for excessive missing values
(Figure 4 b○). Beth selects 30% as the threshold. Dango generates
the new script accordingly based on the clarification (Figure 4 e○).

Later, Beth changes her mind and clicks the EDIT button (Fig-
ure 4 f○), adjusting the threshold from 30% to 50%. She then clicks
the ADD A STEP button (Figure 4 g○) and types in a new step: “Sort
the table alphabetically by the values in the column Name.” Next, she
clicks the REGENERATE button (Figure 4 h○) to obtain the new script.
Lastly, Beth runs the script and gets the final table.

6 EVALUATION

We investigated five research questions in the evaluation of Dango.
To evaluate the usability and efficiency of Dango, we conducted an
IRB-approved within-subjects user study with 38 participants on 7
data wrangling tasks (RQ1-4). To understand the generalizability
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Figure 3: User interface of Dango. In the table view ( a○), users can upload tables ( b○) or create new tables ( c○). Then, they can click the RECORD

button ( d○) and start demonstrating their desired actions. Alternatively, they can express desired actions in natural language in a chatbox ( e○).

Dango will interpret the demonstrations and/or NL descriptions in the backend and generate multiple-choice clarification questions when

needed ( f○). Furthermore, to help users understand and validate the synthesized script, Dango explains it in NL step by step ( g○). Users can

directly edit a step in natural language ( h○), delete a step ( i○), add a new step ( j○), save the script ( k○), remove the script ( l○), or regenerate the

script (m○). Users can click the RUN button ( n○) to execute the script on copies of the original tables and verify its behavior without messing

up the original demonstrations. Dango also renders a data provenance view to track the transformations performed on each table ( o○). Users

can click table nodes, and the corresponding table content will appear in the table view.

of Dango, we conducted a quantitative study with 24 additional
tasks (RQ5).
• RQ1.How different interaction paradigms of Dango can help users

in data wrangling tasks? Dango supports multiple interaction
paradigms for user intent clarification and refinement. This RQ
aims to explore how these interaction paradigms contribute
to data wrangling effectiveness by comparing Dango with its
variants.

• RQ2.How do users perceive and value different features of Dango?

This RQ evaluates user perceptions of different features inDango
by analyzing feature ratings and qualitative feedback.

• RQ3.Why does Dango help users perform data wrangling tasks

more effectively? This RQ aims to get a deeper understanding
of Dango’s effectiveness by analyzing and summarizing the
common reasons why participants liked Dango mentioned in
the post-study survey.
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Figure 4: This figure shows a usage scenario of users using a chatroom to clarify their intent using NL prompts and answering multiple-choice

clarification questions (left-hand side). Users can easily understand the program behavior by reading the step-by-step NL explanations. They

can refine their program by directly editing the step-by-step NL explanations (right-hand side)

• RQ4. How does user expertise level influence task performance?

We envision that Dango will not only be helpful for end-users
but also improve the productivity of experienced users. Thus, we
recruited participants with different levels of expertise in data
wrangling in our user study. This RQ examines whether user
expertise affects user performance.

• RQ5. How well does Dango generalize to a broader range of data

wrangling tasks? To evaluate the generalizability of Dango, we
conducted a systematic evaluation across an additional set of 24
data wrangling tasks. Furthermore, we analyze the distribution

of generated DSL statements and the effectiveness of clarifying
questions (CQs) in this broader task set.

6.1 User Study Conditions

We designed three user study conditions, each of which represents
a specific design of Dango. The comparison of user performance
across these conditions helped us understand the effectiveness of
different interaction paradigms for users to clarify their intent and
provide feedback to refine the generated script. The data provenance
view is enabled in all three conditions.



Dango: A Mixed-Initiative Data Wrangling System using Large Language Model CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Condition A (Demonstration + Conversational Interface +

NL summary): This condition represents a naive design of Dango.
It simply integrates the two interaction modalities and prompts the
LLM to generate the NL summary of a synthesized script. Table 14
shows the promote template to generate the NL summary. This
NL summary does not follow the step-by-step structure and there
is no special treatment to mitigate LLM hallucination. To clarify
user intent or refine the synthesized script, users can provide new
demonstrations and provide feedback in the chatroom. However,
they cannot edit the NL summary to provide feedback.
Condition B (Demonstration + Conversational Interface +

Step-by-Step NL): This condition represents an enhanced design
of the NL feedback mechanisms in Dango. In this condition, Dango
generates the step-by-step NL explanation of a script using the rule-
based method proposed in Section 4.3.1. This design enables a more
faithful explanation with no LLM hallucinations compared to the
NL summary in Condition A. Furthermore, users can provide more
fine-grained feedback to refine the synthesized script by directly
editing specific steps in the NL explanation.
Condition C (Demonstration + Conversation Interface+ Step-

by-Step NL + CQs): This condition represents the final design of
Dango. Compared with Condition B, this condition allows Dango
to proactively ask clarification questions to resolve ambiguities,
as proposed in Section 4.1.3. This transforms from user-initiative
interaction in Condition B to a collaborative mixed-initiative ap-
proach, where the system and user work together to clarify and
refine the intent.

6.2 User Study Participants

We recruited a total of 38 participants (11 female, 27 male) through
a mailing list at Purdue University. 32% of participants had no
programming experience at all or had only taken an introductory
programming course for one semester. 37% had one or more years
of programming experience but less than 5 years. 31% had five or
more years of programming experience. 42% of participants were
undergraduate students, 11% were master’s students, and 47% were
PhD students. These students were from diverse majors, including
Computer Science, Mechanical Engineering, Industrial Engineering,
Materials Engineering, Statistics, Chemical Engineering, Physics,
Agriculture, Business, Hospitality, Communication, and Game De-
sign. Table 16 in Appendix D shows the detailed demographic
information of each participant.

6.3 User Study Tasks

To develop the user study tasks, we first identified 20 data wran-
gling tasks from previous data wrangling work [22, 55, 68] and
extended our tasks with 21 multi-table tasks based on Kasica et
al.’s recent empirical work [56]. Then we discussed and refined
these tasks through three meetings with a domain expert from the
College of Education at Purdue University, who regularly performs
data wrangling tasks such as cleaning student survey responses in
spreadsheets. During the discussions, we removed 13 tasks that the
domain expert thought were too simple or uncommon in practice.
The domain expert also suggested 3 new tasks with conditional
operations and statistical tests. From a total of 31 candidate tasks,
we selected 7 most representative data wrangling tasks based on

the suggestion of the domain expert, including 2 single-table tasks
and 5 multi-table tasks. Among them, 2 tasks involve conditional
operations, and 1 task focuses on statistical testing Table 17 in
Appendix D provides a detailed description of each task.

6.4 User Study Procedure

Each participant came to our lab for a reserved one-hour session.
Participants then signed the consent form. To reduce demand char-
acteristics [85], we told participants that our goal was to understand
the influence of three different conditions of an existing tool. We
did not tell them that we developed this tool or which condition
represented the final design. Furthermore, to mitigate the learning
effect [63], both task and condition assignment orders were coun-
terbalanced across participants. As compensation, each participant
received a $25 Amazon gift card.
Timed Data Wrangling Tasks. Participants watched a 5-minute
tutorial video and spent about 5 minutes becoming familiar with
the tool. Then they completed 3 randomly assigned data wrangling
tasks selected from 7 user study tasks with 3 different conditions.
These assignments were counterbalanced across 3 conditions and
7 tasks, resulting in 5 or 6 trials per task per condition. Since only
tasks 2 and 6 are single-table tasks, we also counterbalanced the task
assignments so that each user experienced at least two multi-table
tasks. Participants will first read the task description and make sure
they understand the tasks. We explicitly told participants not to
directly copy and paste the task description to the chatroom. A task
was considered failed if participants did not generate a script that
could correctly clean the data within 10 minutes.
Post-task Surveys. After completing each task, participants filled
out a post-task survey to give feedback, as described in Table 18 in
Appendix D. The survey first asked users to report their confidence
in the generated data wrangling scripts on a 7-point scale (1—very
low confidence, 7—very high confidence). Then it asked users to
rate the usefulness of key features in each condition on a 7-point
scale. It also asked users what they liked or disliked about the tool
and what they wished they had. To evaluate the cognitive load of
using a tool, we included five NASA Task Load Index questions
[44] as part of the post-task survey.
Post-study Survey. After completing all tasks, participants com-
pleted a post-study survey comparing Dango across conditions.
The survey included questions onwhich conditionwasmost helpful,
reasons for their preferences, and open-ended feedback. Table 19
in Appendix D lists the questions from the survey.

6.5 User Study Measurements & Data Analysis

We collected both quantitative and qualitative data from the user
study. We measured task completion time and the number of at-
tempts per task. We considered a participant made another attempt
when they (1) submitted an incorrect script to the experimenter or
(2) started over from scratch. To gain a deeper understanding of user
behavior patterns in different conditions, we measured the utility
of each key feature by analyzing user events in system logs, such
as starting a new demonstration and editing the NL explanation.

Moreover, Dango heavily relies on LLMs to analyze user intent
and generate clarification questions and data wrangling scripts.
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Since LLMs may misinterpret user intent and hallucinate, it is im-
portant to understand how often they hallucinate during a task
session. Thus, the second author watched all video recordings and
examined the LLM-generated clarification questions and data wran-
gling scripts. A hallucination is detected if a clarification question
is irrelevant to user intent or if the generated script is incorrect.

To analyze the quantitative ratings collected from the post-task
surveys, we used ANOVA tests [33] to examine the statistical sig-
nificance of their mean differences. To analyze the open-ended
feedback, the first author conducted open coding [100] to iden-
tify themes in participants’ responses, followed by thematic analy-
sis [20]. The last author reviewed the coding results and discussed
with the first author to refine the initial codes and themes. The first
author then incorporated feedback, made revisions and adjustments,
and finalized the themes before writing the reports.

7 EVALUATION RESULTS

7.1 RQ1: Effectiveness of Different Interaction

Paradigms

7.1.1 Overall Performance. All participants successfully com-
pleted the tasks in Conditions B and C. However, in Condition A,
two participants were unable to generate the correct scripts within
the 10-minute time limit. The average completion time usingDango
in Condition C is 3 min 30 sec, representing a 45% decrease com-
pared to condition A and a 32% decrease compared to condition B.
An ANOVA test shows that the mean differences in time used are
statistically significant (𝑝-value = 1.76e-05). When using Dango in
Condition C, participants made an average of 1.43 attempts across
all tasks, compared to 2 and 1.66 attempts in Conditions A and B,
respectively. An ANOVA test shows that the mean differences in
number of attempts are statistically significant (𝑝-value = 2.89e-02).

The average percentage of hallucination in each task session is
0.65 in Condition A, 0.59 in Condition B, and 0.18 in Condition C. An
ANOVA test revealed that the mean differences of the hallucination
rate across these three conditions are statistically significant (𝑝-
value = 1.32e-02). Furthermore, Figure 8 shows the relative temporal
distribution of hallucinated scripts in each task session in each con-
dition. These results demonstrate the effectiveness of proactively
asking clarification questions in reducing hallucinations.

7.1.2 Task-Specific Performance. Table 2 shows user perfor-
mance in different tasks and conditions. For Tasks 2, 5, 6, and 7, Con-
dition C significantly reduced the task completion time compared
to Condition A. Pairwise ANOVA tests show that the mean differ-
ences are statistically significant (𝑝-value=4.89e-02, 𝑝-value=4.22e-
02, 𝑝-value=2.13e-04, 𝑝-value=2.77e-03, respectively). For Tasks 5,
6, and 7, Condition C significantly reduced the task completion
time compared to Condition B. Pairwise ANOVA tests show that
the mean differences are statistically significant (𝑝-value=4.82e-
02, 𝑝-value=1.42e-02, 𝑝-value=3.46e-02, respectively). There are no
statistically significant differences in Tasks 1, 3, and 4 since these
tasks are easier compared with other tasks. Tasks 5, 6, and 7 in-
clude complex operations or conditional operations. This suggests
that condition C’s advantages become more prominent in complex
scenarios that require users to clarify their intent.

7.1.3 User Confidence & User Preference. As shown in Figure
5, participants expressed a higher level of confidence when using
Dango in Condition C (Mean: 5.31 vs. 6.18 vs. 6.34). The mean
differences are statistically significant (One-way ANOVA: 𝑝-value=
1.64e-04). When asked which condition they preferred for data
wrangling, 82% of participants chose Condition C.
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Figure 5: User confidence on the data wrangling scripts when using

conditions A, B, and C.
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Figure 6: User responses to the NASA TLX questionnaire (*: 𝑝-value

< 0.05 based on ANOVA test).

7.1.4 Cognitive Overhead. As shown in Figure 6, we detected
significant differences in Performance and Frustration. The ANOVA
tests reveal that the mean differences are statistically significant
for both metrics (𝑝-value = 1.42e-05, and 2.98e-02, respectively).
For Mental Demand, Hurry, and Effort, we did not detect significant
differences (𝑝-value = 1.3e-01, 3.71e-01, and 2.77e-01, respectively).

7.2 RQ2: User Perceptions

In the post-task survey, participants rated the usefulness of key
features of Dango in 7-point Likert scale questions (1—strongly
disagree, 7—strongly agree), as shown in Figure 7.

7.2.1 Participants’ perception on different intent expression
features. Dango supports three features that help users express
their intent. First, users can perform demonstrations on uploaded
tables. Second, users can use the chatroom to prompt their intent
in natural language. Third, if their initial input is ambiguous, they
can clarify their intent by answering multiple-choice clarification
questions posed by the Dango.
Demonstrations. Participants expressed mixed opinions about
demonstrating on the uploaded tables, as shown in Figure 7. Only
21% of participants in Condition A, 21% in Condition B, and 29%
in Condition C agreed or strongly agreed that demonstration was
a convenient way to express intent. Participants mentioned that
demonstrating on tables was fast and straightforward for simpler
tasks (P5), but error-prone for complex tasks if demonstrations are
not clear enough (P1). This suggests demonstrations might be more
effective for simpler tasks but are error-prone for complex tasks.
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Measure

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Condition Condition Condition Condition Condition Condition Condition

A B C A B C A B C A B C A B C A B C A B C

Time 8:56 4:29 5:18 3:57 3:20 1:34 5:42 5:46 3:40 4:40 3:06 3:31 7:46 6:49 4:29 5:10 5:30 2:40 7:42 6:35 3:33

Attempts 2.67 1.60 2.00 1.00 1.50 1.00 1.75 1.75 1.67 1.83 1.50 1.00 2.00 2.00 1.75 2.00 1.80 1.33 2.40 1.40 1.20

# of CQs – – 0.40 – – 0.60 – – 1.33 – – 0.50 – – 3.00 – – 1.00 – – 1.40

Table 2: The average task completion time, average number of attempts, and average number of CQ generated.
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Figure 7: 7-point Likert scale evaluations (1—strongly disagree, 7—strongly agree) of user-perceived convenience, and effectiveness of Dango’s

key features across three conditions.

Using NL Prompts in the Chatroom. Compared to demonstra-
tions, significantly more users preferred to express their intent in
NL. 74% of participants in Condition A, 82% in Condition B, and
89% in Condition C agreed or strongly agreed that using NL in
the chatroom was convenient to express their intent. Participants
appreciated the chatroom feature for allowing easy expression of
requests in natural language (P16), facilitating straightforward com-
munication (P3), and enabling clear articulation of data cleaning
actions (P27). The result suggests that the conversational UI is
effective in communicating user intent.
Answering CQs. As shown in Figure 7, 89% of the participants
in Condition C agreed or strongly agreed that answering CQs is
convenient to express their intent. Participants mentioned that it is
helpful to have Dango first ask clarification questions because it
shows its understanding of their intent (P11) and reduces the burden
to type more detailed clarification instructions when the output is
not desired (P12, P22). This result suggests that proactively asking
clarification questions can effectively help users clarify intent and
complement NL prompting.

7.2.2 Participants’ Perceptions of Different Error-Fixing Fea-
tures. Dango supports two features that help users fix their pro-
gramming errors. First, in all conditions, users can use NL prompts
to provide feedback in the chatroom and ask the system to regen-
erate the script accordingly. In Conditions B and C, users can also
directly edit the step-by-step NL explanation.
Providing Feedback in the Chatroom. As shown in Figure 7, 50%
of participants in Condition A, 66% in Condition B, and 68% in
Condition C agreed or strongly agreed that providing feedback
in the chatroom is effective for error correction. However, some
participants complained that chatroom is not an efficient way to fix
errors, since it requires more clarifications to specify which step
(P9), and type out every detail to fix even small errors (P15).

Editing Step-by-step NL Explanations. In Conditions B and C,
Dango allowed users to fix errors by directly editing the step-by-
step NL description of the scripts. As shown in Figure 7, 61% in
Condition B and 66% in Condition C agreed or strongly agreed
that directly editing the step-by-step NL description is effective in
fixing errors. Participants found that step-by-step NL explanations
were valuable in multiple ways: including clearly indicating where
modifications were needed (P9), offering flexibility in programmod-
ification while illustrating the problem-solving sequence (P20), and
helping verify whether their instructions were correctly interpreted
(P16). However, compared to directly providing feedback in the cha-
troom, we found no statistically significant differences in the mean
ratings between these two features.

7.2.3 Participants’ Perceptions of Different Program Expla-
nation Features. We experimented with two methods to explain
a synthesized script. As described in Section 6.1, in Condition A,
Dango simply generates an NL summary by prompting an LLM. In
Conditions B and C, Dango uses a rule-based method to translate
the synthesized script into a step-by-step NL explanation.
NL Summary. As shown in Figure 7, in Condition A, only 47%
of participants agreed or strongly agreed that NL summary helps
them understand the script and 53% agreed or strongly agreed
that NL summary accurately represented program behavior. Some
participants found the NL summaries challenging to work with,
noting that they were overly verbose (P10), and required effort to
parse and verify against original prompts (P18).
Step-by-Step NL Explanation. As shown in Figure 7, significantly
more users appreciated the step-by-step NL explanations compared
with NL summary. 82% in Condition B and 95% in Condition C
agreed or strongly agreed that these explanations helped them
understand the scripts. Furthermore, 87% in Condition B and 92%
in Condition C agreed or strongly agreed that the step-by-step
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NL explanations accurately represented program behavior. Partic-
ipants found that the step-by-step approach enhanced program
comprehension by improving readability for error checking (P4)
and making scripts easier to understand and execute (P21). The
results suggest that structured step-by-step natural language expla-
nations can effectively help users better validate and understand
the scripts’ behavior.

7.2.4 Participants’ Perceptions of Data Provenance Feature.
The majority of the participants appreciated the data provenance
feature that allows them to check the contents of different versions.
66% of participants in Condition A, 71% in Condition B, and 68% in
Condition C agreed or strongly agreed that seeing data provenance
helps check the contents of different versions of tables. Partici-
pants found that the data provenance view helped build confidence
by showing correspondences between selected tables (P15), and
became more valuable as tasks increased in complexity (P16).

7.2.5 Utility Rates of Different Features. To understand user
behavior when using Dango, we analyzed our system logs and
recordings and examined how participants interacted with differ-
ent features to complete their tasks effectively. Figure 8 renders the
temporal distribution of different user events for all task sessions
in different conditions. Given the variances in the task completion
time of each session, we normalized the occurrence of each user
event with respect to the task session length. Notably, participants
in Condition C relied less on user-initiated features like demon-
strations and step-by-step explanations compared to Conditions
A and B. The differences were statistically significant (𝑝-values =
1.2e-02, and 5.64e-04, respectively). This indicates that participants
in Condition C did not need to spend time on re-prompting and
demonstrations. Instead, participants engaged more with multiple-
choice clarification questions, which helped them effectively clarify
their intent. This improvement aligns with the reduced completion
times and improved success rate reported in Section 7.1.

7.3 RQ3: Reasons of Dango’s Effectiveness

We analyzed participants’ responses in the post-study survey and
identified several key findings that explain why Dango helped
participants better perform data wrangling tasks.
Finding 1: Step-by-step NL explanation helps users understand
the program behavior.We found that the step-by-step NL expla-
nation of the program accelerated the process of program compre-
hension. 82% of participants in Condition B, and 95% of participants
in Condition C agreed or strongly agreed that step-by-step NL de-
scriptions helped them understand the synthesis script, as shown
in Figure 7. P19 said, “It divided the task into NL steps, easy to under-

stand the steps performed.” In contrast, participants in Condition A
spent more time comprehending the NL summary of the program.
P8 said, “I disliked that the natural language summaries didn’t clearly

distinguish between partially inaccurate and accurate responses. Their

similarity made it time-consuming to read the entire summary and

compare different versions.”
Finding 2: Direct edits on step-by-step NL statement make
correction easier.We observed that the LLM misinterpreted user
intent in many cases and generated an incorrect script initially.
In Condition A, participants could only provide feedback to fix

incorrect scripts by providing more demonstrations or giving NL
feedback in the chatroom. These two kinds of feedback turned out
to be not very effective in guiding the LLM to refine the script.
Specifically, in Condition A, 57% of participants encountered an
incorrect script in their first attempt and spent an average of 4
minutes and 6 seconds to fix the incorrect script. By contrast, in
Conditions B and C, participants could directly edit the NL descrip-
tion of an erroneous step of the script. This provided a more precise
and fine-grained feedback to the LLM. While 49% of participants
in Condition B and 34% of participants in Condition C encoun-
tered an incorrect script in their first attempts, they only spent 2
minutes and 41 seconds and and 2 minutes and 25 seconds to fix
the incorrect script. Participants appreciated that they could easily
edit and delete steps in the script (P7) and make corrections while
preserving the conversational context (P1).
Finding 3: Clarification questions help users clarify their in-
tent effectively. Participants frequently provided incomplete or
ambiguous prompts. In Condition C, participants could directly an-
swer relevant multiple-choice clarification questions (CQs) without
needing to articulate their intent in a new prompt. A total of 40
CQs were generated in Condition C. Notably, 62% of participants
who answered CQs succeeded on their first attempt. By contrast,
in Conditions A and B, only 43% and 51% of participants succeeded
in their first attempt. In the post-task survey, 89% of participants
agreed or strongly agreed that answering CQs was an effective way
to express their intent, as shown in Figure 7. P14 commented, “I
appreciate how Dango asks clarifying questions before generating the

program. This approach is better than directly outputting information,

as ChatGPT might do, without truly understanding the user’s intent.”
Similarly, P11 stated, “I appreciated the questions posed by the LLM,

as they eliminated the need for me to specify all the details in my

initial prompt.”

7.4 RQ4: Impact of User Expertise

7.4.1 Overall Performance Comparison of Users with Dif-
ferent Expertise. We categorized participants into three groups
based on their programming experiences, including novices (<1
year, N=12), intermediate programmers (1-5 years, N=13), and ex-
perts (> 5 years, N=12). We compared task completion time across
these three groups. Experts completed tasks in an average of 4
minutes and 17 seconds, intermediate programmers in 5 minutes
and 14 seconds, and novices in 5 minutes and 32 seconds. These
mean differences were not statistically significant (ANOVA test: 𝑝-
value=1.33e-01). The average number of attempts was similar across
groups—experts made 1.67 attempts, intermediate programmers
1.74 attempts, and novices 1.67 attempts. These mean differences
were also not statistically significant differences (ANOVA test: 𝑝-
value=0.92e-01). This suggests that user expertise had a limited
impact on performance. We interpret this as a positive impact of
Dango, which narrows the performance gap between users of
different levels of programming expertise .

7.4.2 Task-specific Comparison of Users with Different Ex-
pertise. In a detailed analysis of individual tasks, we found that
task completion time was generally consistent across user groups
for Tasks 1-6, aligning with our overall finding of no significant dif-
ferences. However, Task 7 emerged as a notable exception. Experts
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Figure 8: A scatter plot displays events occurring throughout normalized time across all conditions.

completed this task in an average of 2 minutes and 10 seconds, while
intermediate programmers and novices took considerably longer
time—6 minutes and 54 seconds and 6 minutes and 53 seconds,
respectively. This difference was statistically significant (ANOVA
test p-value=1.15e-03). One plausible reason is that Task 7 required
complex operations such as conditional data transformations and
statistical testing. In particular, participants were required to per-
form a statistical test on their data and then apply an conditional
filtering of data records based on the test results. Compared with
novices and intermediate programmers, experts have a significant
advantage in both knowledge and experience to handle such a com-
plex task. This suggests that while Dango successfully leveled the
playing field for common data wrangling operations, more complex
tasks may still benefit from user expertise.

7.5 RQ5: Generalizability of Dango

To evaluate the generalizability of Dango, we conducted a case
study leveraging 10 data wrangling tasks collected from prior
work [22, 55, 56, 68]. Since the original tasks primarily focused
on single-table tasks, we extended the benchmark by including
another 14 multi-table data wrangling tasks introduced by Kasica
et al. [56]. The final benchmark includes a total of 24 tasks.1 It
includes some common data wrangling tasks, such as transposing
tables (benchmark ID 24), splitting one column into two columns
based on a delimiter (benchmark ID 16), and summarizing tables
by calculating average numbers (benchmark ID 21). It also includes
more difficult tasks that involve conditional operations. For in-
stance, deleting rows as long as there is a missing value in the row
(benchmark ID 23). Since this quantitative study aims to verify that
Dango can solve various data wrangling tasks instead of evaluat-
ing its learnability or usability, the first two authors independently
solved these 24 tasks using Dango. They represent expert users
who are familiar with the tool and have rich experience in data
wrangling. Thus, the results of this study should be interpreted as
the performance of Dango in ideal situations. A task is considered
failed if an author cannot solve the task after 10 minutes. Overall,
the two authors solved all 24 tasks with an average of 62.67 seconds
and 75.90 seconds, respectively. On average, they required 1.54 and
1.33 attempts per task. This result shows that Dango can be used
to solve a wide range of data wrangling tasks.
1We provide the task descriptions and synthesized data wrangling scripts in the
supplemental material.

7.5.1 DSL Statement Distribution in Synthesized Programs.
To understand the generalizability of individual DSL statements
that are supported by Dango, we investigated the number of DSL
statements that appeared in the synthesized programs. Specifically,
Figure 9 shows how often each DSL statement was synthesized in
these 24 tasks. The translation rules for drop and merge were the
most utilized, both were triggered 13 times. The frequent use of
drop implies that many data wrangling tasks require removing un-
desired data, e.g., rows with missing values, columns with sensitive
information, etc. Furthermore, the frequent use of merge implies a
common need of combining cleaned data from multiple tables into
one single final table.

7.5.2 Effectiveness of Clarification Questions. When solving
these 24 tasks, the first author encountered 46 CQs, while the second
author encountered 32 CQs. The authors examined the helpfulness
of each CQ by checking if (1) it asked relevant and essential in-
formation critical to task success, and (2) it helped clarify their
intent. The first author found 87% of the questions helpful, while
the second author rated 94% as helpful. Regarding user responses
to CQs, the first author selected the provided options 74% of the
time, while the second author selected the provided options 75% of
the time. In the remaining case, they chose “Other (please specify)”
to clarify their intent. This implies that the auto-generated options
in the CQs are likely to cover user intent in the majority of cases.

8 DISCUSSION

8.1 Design Implications

8.1.1 Aligning the LLM with human intent via interactive
clarification questions. Compared to existing data wrangling
tools, our tool allows the LLM to proactively ask clarification ques-
tions to engage with users and understand their intent. The success
of Dango also echoes Grice’s Maxims of Manner in cooperative
principles [15], which emphasize being clear and avoiding ambigu-
ity in communication with users. Besides, we implement multiple-
choice questions with potential options for users to select from,
rather than relying on open-ended questions. This allows for pre-
cise intent clarification while reducing the manual effort of typing
down details to articulate user intent. By integrating the Q&A his-
tory, our tool improves the accuracy of data wrangling tasks and
provides a more cooperative and user-friendly experience.
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Figure 9: The number of DSL statements that cover different kinds of data-wrangling tasks in the case study.

8.1.2 Scaffolding LLM understanding using step-by-step NL
explanations. The synthesized script can be interpreted as a man-
ifesto of the LLM’s understanding of user intent. If the LLM misin-
terprets user intent, the synthesized script is likely to be wrong. The
NL explanation in Dango serves as an effective bi-directional com-
munication vehicle between the user and the LLM. By explaining
the script in NL, users can easily understand how the LLM inter-
prets their intent without the need for programming knowledge.
Additionally, the step-by-step structure of the NL explanation pro-
vides an effective scaffold for users to indicate the generation errors
and provide more targeted and granular feedback than supplement-
ing more demonstrations or entering feedback in the chatbot. The
targeted and granular feedback can further help the LLM rectify its
misunderstanding and refine the synthesized script.

8.1.3 Help user track data lineage of multiple tables using
data provenance. Dango provides the data provenance feature
that enables users to inspect different versions of their data. This is
particularly useful for complex data wrangling tasks involving mul-
tiple tables. This feature allows users to trace the lineage of tables,
revealing how specific data points have been modified throughout
the wrangling process. Users can interact with the data provenance
view by clicking on a table node, triggering the corresponding table
content to appear in the table view panel. This visual correspon-
dence, also known as brushing [14], allows users to visualize table
interdependencies and build confidence in the synthesized script.

8.2 Limitations

First, our predefined DSL functions may not cover all possible data
wrangling scenarios. The DSL does not explicitly include traditional
control structures like for and while loops. Second, to mitigate
hallucinations, we only implement a syntax checker to validate
the synthesized script, omitting semantic correctness. Third, some
participants mentioned the lack of advanced table features, such
as the ability to use formulas directly in table cells, which are com-
monly supported by Microsoft Excel and Google Sheets. However,
Dango currently does not support synthesizing formulas. Finally,
our user study is conducted in a controlled lab setting. It does not re-
flect the complexity of real-world data wrangling scenarios, which
may involve more complex operations, richer datasets, and even
collaboration between multiple users in a longer period of time.

8.3 Future Work

8.3.1 Challenges and considerations of prompt design. LLMs
introduce several design challenges. First, LLMs are prone to hallu-
cination [66]. We acknowledge that some errors or failures in our
study stem from hallucinations. We observe that LLMs misuse our

DSL even when our prompt clearly states the DSL grammar and
provides detailed usage instructions. We have attempted to miti-
gate this by building a syntax checker to give feedback to the LLM.
However, this increases synthesis time, and hallucination still exists.
Second, we invested considerable effort and time to balance the
level of detail and the number of few-shot examples in the prompt.
We found too few examples might increase the error rate and elicit
overgeneralized answers. Conversely, too many specific examples
might reduce an LLM’s inference ability. For instance, we observed
that LLMs tend to rely more on pattern matching of the provided
examples rather than truly understanding the underlying tasks.
Future work should consider these prompt engineering challenges
that have recently been coined as the gulf of envision [95].

8.3.2 Handling ambiguous user intent. We found many errors
stem from users’ ambiguous NL inputs and demonstrations. These
errors cannot be solely attributed to the model’s hallucination prob-
lems or prompt designs. When given ambiguous input, the LLM
could interpret it differently. For example, if a user requests to “sort
the elements in the table,” several questions arise: Should the sort-
ing be ascending or descending? Should LLM sort it based on the
name alphabetically or the ID values? Our study shows that simple
clarification questions could greatly mitigate the effect of ambigu-
ous intent. However, current LLM systems [8, 13, 34, 98] rarely
check with users or help them clarify intent, instead synthesizing
output in one shot. Future work could develop more interactive
approaches to disambiguate users’ intent, rather than expecting the
LLM to magically “read minds” when given ambiguous input.

8.3.3 Mitigating the abstract matching problem in NL inter-
faces. We analyzed the recordings to understand why some users
failed or spent more time to complete tasks. We found that while
these users typically had well-formed intent, they often struggled
to articulate them with sufficient precision and detail for the LLM
to accurately map their intent to desired solutions. Such a challenge
is common in NL interfaces, and it can be generally seen as the gulf
of execution [49], or more precisely the abstraction matching

problem [72]: selecting words that align with the appropriate level of
abstraction required by the system to choose correct actions. However,
our clarification question is not currently designed to bridge the
abstraction gap. A potential solution is to build a bidirectional chan-
nel that maps the NL interface to the code. This could create visual
correspondence, allowing users to link specific NL to code. Such a
feature could also serve as a valuable learning tool for end-users.

8.3.4 Visualizing intermediate states for fine-grained exami-
nation. Some users have expressed concerns about the visibility of
intermediate states in a data wrangling script. They noted that some
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intermediate states are not visible when executing the script. For
example, when synthesizing a script to delete a column based on the
p-value computed by a statistical test, users may want to check the
p-value to make sure the t-test is performed correctly. There have
been some existing efforts to enable users to inspect the intermedi-
ate states of a synthesized script [23, 96, 114]. A design challenge
in the domain of data wrangling is that some intermediate states
may involve a large volume of data, which may be overwhelming
to visualize to users. Furthermore, given the large volume of data,
helping users recognize the intermediate state change before and
after a data transformation operation could be challenging. These
challenges are worthwhile to investigate in the future.

8.3.5 Supporting multimodal interaction paradigms. Dango
currently supports demonstrations and NL interaction. We believe
recent advancements in multimodal LLMs [47, 69, 70] will further
expand the potential design space for data wrangling tasks. For
instance, future systems could enable users to sketch and circle data
to clarify references such as “that column” or “this row.” They could
also support hand gestures to zoom, filter, and navigate multi-table
tasks that are tedious with NL prompts alone. However, implement-
ing such systems poses several challenges. First, it is difficult to
“translate” different intent from various modalities into a unified
language. Second, a multimodal system should also be able to han-
dle ambiguous inputs and generate conclusions with varying levels
of certainty [51]. Future work should consider these challenges,
also known as fusion [51] issues, in the era of multimodal LLMs.

9 CONCLUSION

This paper introduces Dango, a mixed-initiative LLM system for
data wrangling. Compared with previous work, Dango allows the
LLM to proactively ask clarification questions to resolve ambigui-
ties in user intent. It also provides multiple feedback mechanisms
to help the user understand and refine the synthesized script. A
within-subjects study (n = 38) demonstrates that Dango’s features
significantly improved data wrangling efficiency. Furthermore, a
case study with 24 additional tasks demonstrates the generalizabil-
ity of Dango’s effectiveness on different kinds of tasks.
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A Domain Specific Language

Table-level Functions

1. create_table(row_number, column_number): Returns an empty table with the specified number of rows and columns.
2. delete_table(table_name): Deletes a table from the database.
3. pivot_table(table, index, columns, values, aggfunc): Reshapes the table so that each unique value in columns becomes a separate column,
with index values as row headers, and the corresponding values filled in their respective cells.
4. merge(table_a, table_b, how=’outer’, on=None): Merges two tables based on a common column.
5. subtable(table, labels, axis): Extracts a subtable from a DataFrame based on specified rows or columns.
6. transpose(table): Transposes the given table.
Column/Row-level Functions

1. insert(table, index, index_name, axis): Inserts an empty row or column at the specified index in the table. Other rows or columns will be
moved down or to the right.
2. drop(table, label, axis): Drops one or more rows or columns from the table.
3. assign(table, start_row_index, end_row_index, start_column_index, end_column_index, values): Assigns fixed constant values to specific
cells in the table.
4. move(origin_table, origin_index, target_table, target_index, axis): Moves a row or column from the origin table to the target table.
5. copy(origin_table, origin_label, target_table, target_label, axis): Copies a row or column from the origin table to the target table at the
specified label.
6. swap(table_a, label_a, table_b, label_b, axis): Swaps rows or columns between two tables.
7. rearrange(table, by_values=None, by_array=None, axis): Rearranges the rows or columns of the table based on the specified order.
8. divide(table, by, axis): Divides the table by the specified row or column, returning a list of tables.
9. fill(table, method, labels, axis): Fills missing values in the table using the specified method.
Summarization Functions

1. aggregate(table, functions, axis): Aggregates the table using a specified function.
2. test(table_a, label_a, table_b, label_b, strategy, axis): Compares two labels using the specified statistical test and returns a tuple (statistic,
p_value).
3. count(table, label, value, axis): Counts the occurrences of a specified value within a given column or row in a DataFrame, then stores the
result in a new DataFrame.
String Operation Functions

1. concatenate(table, label_a, label_b, glue, new_label, axis): Concatenates two rows or columns using a string as glue and appends the
merged row or column to the table.
2. split(table, label, delimiter, new_label_list, axis): Separates rows or columns based on a string delimiter within the values.
3. format(table, label, pattern, replace_with, axis): Formats the values in a row or column based on the specified pattern and "replace_with"
using re.sub().

Table 3: DSL of Dango.
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B Prompt Designs

CONTEXT

You are a professional data scientist. A user has made some changes in the CSV files.
Your task is to understand the user intent regarding how they want to clean the data.
OBJECTIVE

Ask clarification questions to understand the user intent.
GUIDELINES

1. Infer their intent through the table diff and user instruction. Do not infer beyond the information provided in the input.
2. Avoid directly asking, "What is your intent?" Instead, ask questions related to the changes made in the table and the instructions given.
3. If the user intent is clear, you can output the intent summary.
INPUT

- Sheet Information: the name of the sheet, the headers, and the number of rows in the table.
- Table Diff: the changes made to the table.
- User Instruction: the user’s instruction that indicates the changes they want to make.
OUTPUT

Your output must be in JSON list form.
If you need more information, output a question to ask the user:
{

"type": "question",
"summary": "<summary>",
"question": "<question>",
"choices": ["<choice_1>", "<choice_2>", ..., "<choice_n>", "other"]

}
If the intent is clear enough, output a summary of the user intent:
{

"type": "finish",
"summary": "<summary>"

}
EXAMPLES

<SOME EXAMPLES>

Table 4: The prompt of intent summarization & CQ generation.
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CONTEXT

You are a professional data scientist. You have already asked some clarification questions and the user has replied.
Now, you might want to ask additional questions to gain a deeper understanding of their intent.
OBJECTIVE

<SAME AS TABLE 4>
GUIDELINES

<SAME AS TABLE 4>
INPUT

- Sheet Information: the name of the sheet, the headers, and the number of rows in the table.
- Table Diff: the changes made to the table, including the cells that have been modified.
- User Instruction: the user’s instruction that indicates the changes they want to make.
- Chat History: The history of chat between the assistant and the user.
OUTPUT

<SAME AS TABLE 4>
EXAMPLES

<SOME EXAMPLES>

Table 5: The follow-up prompt of intent summarization & CQ generation.

CONTEXT

You are a professional data scientist.
Your task is to generate a step-by-step plan to clean the data based on the user intent and the sheet information.
OBJECTIVE

Generate a step-by-step plan to clean the data based on the user intent and the sheet information.
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

1. You should specify the DSL function after the description. Do not add or invent new functions.
2. You should point out the arguments for each function based on the given description, please refer to the column and row information in the sheet
information.
3. Please attention that the row index starts from 0, which is the header row. The column index starts from 1.
INPUT

- Sheet Information: the name of the sheet, the headers, and the number of rows in the table.
- User Intent: the user intent.
OUTPUT

- Step-by-step plan: a JSON list.
- Each step should only include the function name and its description.
- If there are multiple steps, list them in the order they should be executed.

EXAMPLES

<SOME EXAMPLES>

Table 6: The prompt for step-by-step planning.
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CONTEXT

You are a professional data scientist.
Your task is to generate a step-by-step plan to clean the data based on the user intent and an error message from the last step-by-step plan.
OBJECTIVE

<SAME AS TABLE 6>
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

<SAME AS TABLE 6>
INPUT

- Sheet Information: the name of the sheet, the headers, and the number of rows in the table.
- User Intent: the user intent.
- Last step-by-step plan: A JSON list. Each step should include the function name and its description.
- Error Message: the error message from the last generation.
OUTPUT

<SAME AS TABLE 6>
EXAMPLES

<SOME EXAMPLES>

Table 7: The prompt for step-by-step planning with error messages.

CONTEXT

You are a professional DSL (Domain Specific Language) generator.
You will be given a step-by-step description of a data cleaning plan.
You need to follow the description and create a DSL script to help user clean and manipulate the data.
OBJECTIVE

Create a DSL script to clean the data based on the description.
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

1. You should only use the DSL functions provided in the DSL Grammar. Do not add or invent new functions.
2. For every step, you need to find the best function from the DSL Grammar to perform the described action.
3. Table names should end with ".csv" to indicate that they are CSV files.
4. If you use an integer for a row index, it should be 0-based. If you use a string for a row index, it should start from "1".
5. For None values, you can use "null" in the output.
6. This DSL script is not the final program. Please use the table names instead of real pandas DataFrames in the arguments.
INPUT

- Sheet information: the name of the sheet, the headers, and the number of rows in the table.
- Step-by-step Plan: a detailed description of the process.
OUTPUT

Your output should be in a JSON form.
The JSON should contain two parts:
- "required_tables": A list of table names that are required to perform the cleaning process.
- "program": A list of objects that represent the functions to be applied to the tables. Each object of the list should contain the function name and its
arguments. If a function needs to be applied to special cells, you can add a "condition" parameter to the object.
Do not add any other characters to the output.
EXAMPLES

<SOME EXAMPLES>

Table 8: The prompt for generating a DSL script.
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CONTEXT

You are a professional DSL (Domain Specific Language) generator.
You will be given a step-by-step description of a data cleaning plan, and an error message from the last generation.
You need to follow the description and create a DSL script to help the user clean and manipulate the data.
OBJECTIVE

<SAME AS TABLE 8>
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

<SAME AS TABLE 8>
INPUT

- Sheet information: the name of the sheet, the headers, and the number of rows in the table.
- Step-by-step Plan: a detailed description of the process.
- Error Message: The error message from the last generation.
OUTPUT

<SAME AS TABLE 8>
EXAMPLES

<SOME EXAMPLES>

Table 9: The prompt for generating a DSL script with error messages.

CONTEXT

You are a professional DSL (Domain Specific Language) expert.
You will be given a required tables list, a DSL functions list in a JSON list format, and user intent.
You need to create a Python code snippet that executes the given DSL function.
OBJECTIVE

Create a Python code snippet that executes the given DSL functions list.
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

1. All output should include the save_table function.
2. When creating a new table using the save_table function, ensure the table is formatted as "{name}_v{version}.csv". Please start the version from 0.
3. When using merge_table function, here is the naming convention for the tables:
- merge_table function: "merged_v0.csv"
4. The row indexes are strings that start from "1" and should be enclosed in double-quotes.
5. Notice the number of output arguments for each function and assign them accordingly.
INPUT

- Required Tables: A list of table names that are required to perform the DSL functions.
- DSL Program: A JSON list containing the DSL functions to be executed.
- User Intent: A natural language description of the user intent.
OUTPUT

Your output should be between ``` tags and contain the Python code snippet that executes the given DSL function.
EXAMPLES

<SOME EXAMPLES>

Table 10: The prompt for executing a DSL script.
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CONTEXT

You are a professional DSL (Domain Specific Language) generator.
You will be given an instruction to create a DSL and information including a previous version DSL list and a DSL grammar.
OBJECTIVE

Create the DSL script as the instructions specified.
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

1. You should only use the DSL functions provided in the DSL Grammar. Do not add or invent new functions.
2. Table names should end with ".csv" to indicate that they are CSV files.
3. This DSL script is not the final program. Please use the table names instead of real pandas DataFrames in the arguments.
INPUT

- Previous generated DSL
- New Instruction
OUTPUT

Your output should be in a JSON object. Each object should contain the function name and its arguments.
If a function needs to be applied to specific cells, you can add a "condition" parameter to the object.
EXAMPLES

<SOME EXAMPLES>

Table 11: The prompt for regenerating a DSL script based on user feedback.

CONTEXT

You are a professional DSL (Domain Specific Language) generator.
You will be given instructions on how to change a DSL from the previous version to the new DSL.
OBJECTIVE

Change the DSL script as the instructions specified.
DSL GRAMMAR

<DSL_GRAMMAR>
GUIDELINES

1. You should only use the DSL functions provided in the DSL Grammar. Do not add or invent new functions.
2. Table names should end with ".csv" to indicate that they are CSV files.
3. This DSL script is not the final program. Please use the table names instead of real pandas DataFrames in the arguments.
INPUT

- Previous generated DSL
- New Instruction
OUTPUT

Your output should be in a JSON object. Each object should contain the function name and its arguments.
If a function needs to be applied to specific cells, you can add a "condition" parameter to the object.
EXAMPLES

<SOME EXAMPLES>

Table 12: The prompt for editing a DSL script based on user feedback.
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CONTEXT

You are a professional data scientist.
You will be given a DSL script that is used to clean and manipulate the data and a previous user intent.
OBJECTIVE

Update the user intent based on the new DSL script.
INPUT

- New DSL Script: a list of objects that represent the functions to be applied to the tables.
OUTPUT

New user intent based on the new DSL script.
EXAMPLES

<SOME EXAMPLES>

Table 13: The prompt for updating the user intent for program refinement.

CONTEXT

You are a professional Data Scientist.
You will be given a DSL script that is used to clean and manipulate the data.
OBJECTIVE

Provide a natural language description for the DSL script.
DSL GRAMMAR

<DSL_GRAMMAR>
INPUT

- DSL Script: a list of objects that represent the functions to be applied to the tables.
OUTPUT

- NL Explanation: a natural language description of the DSL script.
EXAMPLES

<SOME EXAMPLES>

Table 14: The prompt to generate a NL summary of a synthesized DSL in Condition A of the user study.
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C Translation Rules

Statements Translation rules

create_table(X, Y) “Create a blank table with” + X + “rows and” + Y + “columns”

delete_table(X) “Delete the table” + X

insert(table, X, Y, axis) “Insert a column at position” + X + “in the given table(s)”

drop(table, X, axis) “Drop the column” + X + “in the given table(s)”

assign(table, row, col, value, values) “Assign the values” + json.dumps(values) + “in the given table(s)”

move(table, X, Y, axis) “Move the column” + X + “to column” + Y + “in the given table(s)”

copy(table, X, Y, axis) “Copy the column” + X + “to column” + Y + “in the given table(s)”

swap(table, X, Y, axis) “Swap the column” + X + “and the column” + Y + “in the given table(s)”

merge(table_a, X, Y) “Merge the given table(s) with the table” + X + “based on the values in the column” + Y

concatenate(table, X, Y, Z, axis) “Concatenate the columns” + X + “and” + Y + “in the given table(s) with the glue” + Z

split(table, X, Y, axis) “Split the values in the column” + X + “in the given table(s) with the delimiter” + Y

transpose(table) “Transpose the given table(s)”

aggregate(table, X) “Aggregate the given table(s) with the functions” + X

test(A, B, C, D, E, axis) “Test the columns” + B + “in table” + A + “and” + D + “in table” + C + “using the” + E

rearrange(table, X, axis) “Rearrange the columns in the given table(s) based on the values in the column” + X

format(table, W, X, Y, axis) “Format the values in the column” + W + “in the given table(s) with the pattern” + X + “and replace them with” + Y

divide(table, X, axis) “Divide the given table(s) by the values in the column” + X

fill(table, X, Y) “Fill the missing values in the column” + X + “in the given table(s) with the method” + Y

pivot_table(table, W, X, Y, Z) “Create a pivot table in the given table(s) with the index” + W + “, columns” + X + “, values” + Y + “, and the aggregation function” + Z

subtable(table, X, axis) “Extract a subtable from the given table(s) based on the columns” + X

count(table, X, Y, axis) “Count the occurrences of the value” + Y + “in the column” + X + “in the given table(s)”

Table 15: Translation rules for DSL to Natural Language.
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D User Study Material

D.1 Participant Demographics

ID Gender

Programming

Experience

Education Department Expertise

P1 Male 1-5 years Undergraduate Computer Science Novice
P2 Male 5+ years PhD Computer Science Expert
P3 Female 1-5 years PhD Statistics Novice
P4 Male 5+ years Master Computer Science Expert
P5 Male 5+ years Master Computer Science Expert
P6 Female 1-5 years Undergraduate Computer Science Novice
P7 Male 1-5 years Undergraduate Computer Science Novice
P8 Male 1-5 years Undergraduate Computer Science Novice
P9 Female 1-5 years PhD Industrial Engineering Novice
P10 Female < 1 year PhD Hospitality End-user
P11 Male 5+ years PhD Computer Science Expert
P12 Male 5+ years PhD Computer Science Expert
P13 Female 1-5 years PhD Computer Science Novice
P14 Male 1-5 years Undergraduate Computer Science Novice
P15 Male 1-5 years Undergraduate Computer Science Novice
P16 Male 1-5 years Undergraduate Computer Science Novice
P17 Male 5+ years PhD Computer Science Expert
P18 Male 5+ years PhD Computer Science Expert
P19 Female 5+ years Master Computer Science Expert
P20 Male 1-5 years PhD Physics Novice
P21 Male 1-5 years Undergraduate Computer Science Novice
P22 Male 5+ years Undergraduate Computer Science Expert
P23 Male 5+ years Undergraduate Computer Science Expert
P24 Female 5+ years Undergraduate Computer Science Expert
P25 Female 5+ years Undergraduate Computer Science Expert
P26 Male < 1 year PhD Materials Engineering End-user
P27 Male < 1 year Undergraduate Game Design End-user
P28 Male < 1 year Master Business Analysis End-user
P29 Female 1-5 years Undergraduate Business Analysis Novice
P30 Male < 1 year PhD Industrial Engineering End-user
P31 Male < 1 year Postdoc Agricultural Engineering End-user
P32 Male < 1 year PhD Game Design End-user
P33 Female < 1 year Undergraduate Agricultural Economics End-user
P34 Male 1-5 years PhD Mechanical Engineering Novice
P35 Male < 1 year PhD Chemical Engineering End-user
P36 Male < 1 year PhD Mechanical Engineering End-user
P37 Male < 1 year Undergraduate Mechanical Engineering End-user
P38 Female < 1 year PhD Communication End-user

Table 16: Participant Demographics
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D.2 User Study Tasks

Task Category Description

Task 1 Table Segmentation Create four tables: “Q1” for sales from January to March, “Q2” for April to June, “Q3”
for July to September, and “Q4” for October to December.

Task 2∗ Data Imputation Fill all missing values in the rows across the table with the mean of each respective
column.

Task 3 Categorical Analysis Split the table into separate tables based on the “Educational Level” column. For each
resulting table, summarize the “income” values by calculating their mean.

Task 4 Table Integration Merge two tables based on matching student IDs, keeping only rows where the ID
appears in both tables. Then count the number of “Male” entries in the “sex” column
of the resulting table.

Task 5 Fuzzy Matching Merge two tables using fuzzy matching on student names. Separate the merged
names into distinct “last name” and “first name” columns. Finally, sort the resulting
table alphabetically by last name.

Task 6∗ Data Cleaning Remove rows with excessive missing values (user decides the threshold). For any
remaining rows with missing values, fill these entries with the average values of
their respective columns.

Task 7 Statistical Analysis Conduct a statistical analysis comparing the “Years of Experience” column in Table 1
with the “Age” column in Table 2. If the result is statistically significant, remove one
of these columns, retaining only the other.

∗Single-table tasks

Table 17: User Study Tasks Overview
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D.3 Post-task questionnaires

ID Questions Scale

User Confidence

Q1 I felt confident about the final generated data cleaning script. 1 (Strongly Disagree) – 7
(Strongly Agree)

NASA TLX Questions

Q2 How mentally demanding was using this tool? 1 (Very Low) – 7 (Very High)
Q3 How hurried or rushed were you during the task? 1 (Very Low) – 7 (Very High)
Q4 How successful would you rate yourself in accomplishing the task? 1 (Failure) – 7 (Perfect)
Q5 How hard did you have to work to accomplish your level of performance? 1 (Very Low) – 7 (Very High)
Q6 How insecure, discouraged, irritated, stressed, and annoyed were you? 1 (Very Low) – 7 (Very High)

Ratings of Key features

Q7 Demonstrating on the uploaded tables is a convenient way to express my intent. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q8 Using natural language in the chatroom is a convenient way to express my intent. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q9§ Answering clarification questions is an effective way to clarify my intent. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q10 Providing feedback through the chatroom is an effective way to fix errors. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q11 Directly editing descriptions of erroneous steps is an effective way to fix errors. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q12‡ Step-by-step NL descriptions helped me understand and validate script behavior. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q13‡ Step-by-step NL descriptions accurately represented the program’s behavior. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q14† NL summary of the script helped me understand and validate script behavior. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q15† NL summary of the script accurately represented the program’s behavior. 1 (Strongly Disagree) – 7
(Strongly Agree)

Q16 Seeing table’s data provenance and version contents was helpful. 1 (Strongly Disagree) – 7
(Strongly Agree)

Open-ended Feedback

Q17 What do you like about Dango in this setting? Open-ended
Q18 What do you dislike about Dango in this setting? Open-ended
Q19 What suggestions do you have for improving Dango in this setting? Open-ended

†: Condition A only; ‡: Condition B, C only; §: Condition C only

Table 18: Post-task survey questions including NASA TLX measures for subjective workload assessment

D.4 Post-study questionnaires

ID Questions Scale

Q1 Which condition was more helpful in cleaning data? (Condition A, B, C)
Q2 Why did you find it more helpful? Open-ended
Q3 Why did you find other conditions less helpful? Open-ended
Q4 Any other thoughts, comments, or feedback? Open-ended

Table 19: After finishing all the tasks, participants rated which condition was more helpful for data cleaning and provided

feedback on why they found certain conditions more or less helpful, using both Likert scale and open-ended responses. (Note:

In the survey, UI names were coded to prevent bias)
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